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Abstract
Electromagnetic field fluctuations are responsible for the destruction of electron
coherence (dephasing) in solids and in vacuum electron beam interference.
The vacuum fluctuations are modified by conductors and dielectrics, as in
the Casimir effect, and hence, bodies in the vicinity of the beams can
influence the beam coherence. We calculate the quenching of interference
of two beams moving in vacuum parallel to a thick plate with permittivity
ε(ω) = ε0 + i4πσ/ω. In the case of an ideal conductor or dielectric (|ε| = ∞)

the dephasing is suppressed when the beams are close to the surface of the plate,
because the random tangential electric field Et , responsible for dephasing, is
zero at the surface. The situation is changed dramatically when ε0 or σ is
finite. In this case there exists a layer near the surface, where the fluctuations
of Et are strong due to evanescent near fields. The thickness of this near-field
layer is of the order of the wavelength in the dielectric or the skin depth in the
conductor, corresponding to a frequency which is the inverse electron time of
flight from the emitter to the detector. When the beams are within this layer
their dephasing is enhanced and slow enough electrons can be even stronger
than far from the surface.

PACS numbers: 03.65.Yz, 03.50.De, 03.65.Ta, 05.10.Gg

1. Introduction

Quantum electromagnetic (EM) field fluctuations are well known as being responsible for
the Casimir forces, see for example [1]. Less known is the role of these fluctuations in the
destruction of electron coherence. In weak localization phenomena in solids EM fluctuations
are one of the dephasing mechanisms of conduction electrons [2], see also [3]. The interference
of vacuum electron beams, observed experimentally [4, 5], is also quenched by EM fluctuations
[6], see also [7]. These two papers consider EM fluctuations in a vacuum or when ideal
conductors are present in the vicinity of the beams. The role of dissipation was discussed
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in [8]. Based on physical arguments, the decoherence was related to the deceleration of an
electron from the beam due to the Ohmic dissipation of the current produced in the metal by
the image charge.

The aim of this paper is to extend the calculations of [6, 7] to the case where the
beams are close to dissipative bodies and to consider in detail the experiment geometry when
two interfering beams move in vacuum parallel to a thick infinite plate with permittivity
ε(ω) = ε0 + i4πσ/ω. Calculations of the dephasing factor in this geometry demonstrate the
crucial role of dissipation. If the plate is an ideal conductor, σ = ∞, the fluctuations of the
tangential electric field Et , which are responsible for beam dephasing in this geometry, are
suppressed near the plate surface because of the boundary condition Et = 0 at the surface.
However, when σ is finite, very strong fluctuations of Et exist near the plate surface, within
a layer of the order of the skin depth. These near-field fluctuations dramatically enhance the
beam dephasing. Unexpectedly, a similar effect also exists near a lossless dielectric with high
permittivity, σ = 0, ε0 � 1, within a layer of the order of the wavelength in the dielectric.

The paper is organized as follows. In section 2 we present the dephasing factor e−K

in terms of the EM field correlator D in the case of no dissipation, equation (7), and give
reasons why the quantum Langevin equation for the EM field has to be used when dissipation
is present. In section 3 we derive the Langevin equation and prove that the expression of K in
terms of D is valid in the case of dissipation too. In this section we also present the relation
between D and the EM field retarded Green function G, which is used to calculate D. The
above-mentioned special geometry is considered in section 4, where K is given as an integral,
equation (32), over wave vectors and frequencies, containing the spectral density of the EM
field fluctuations 〈EtEt 〉kω, and the spectral density |(l)kω|2 of the EM field radiated by the
beam electrons. 〈EtEt 〉kω is calculated in section 5 and section 6, where equations (53) and
(54) demonstrate the enhancement of fluctuations due to near fields. In section 7 we present
a model for |(l)kω|2 and calculate K explicitly as a function of the distance of the beams from
the plate d and the electron velocity v (see equations (61), (62) and (63) and the text which
follows). It turns out that the dephasing enhancement due to near fields is appreciable when
v and σ are not very large. In section 8 we discuss the relation between beam dephasing and
beam EM radiation. The appendix contains some calculation details.

2. Beam dephasing

If one ignores the interaction of the beam electrons with the EM field, the number of electrons
measured in the interference experiment is n = |ψ1|2 + |ψ2|2 + 2 Re(ψ1ψ

∗
2 ), where ψ1 and

ψ2 are the wavefunctions corresponding to the coherent motion of the electrons in beams 1
and 2, and n is calculated at the detector position. The interaction with the EM field does
not affect the squares |ψ1|2 and |ψ2|2 (since it does not change the number of electrons in
the beams), but the product ψ1ψ

∗
2 , responsible for the interference pattern, is multiplied by a

factor eiφ e−K with real φ and positive K. The first factor only shifts the interference pattern in
space, while the second one reduces the amplitude of the interference oscillations (compared
to the background |ψ1|2 + |ψ2|2) and describes dephasing.

To calculate the strength of dephasing we use the ‘trace of the environment’ picture [3].
At t = t0, when the electron is emitted from the source, the environment is in state |t0〉.
While moving, the electron interacts with the environment and perturbs its state. When the
electron moving in beam 1 arrives at the detector at time t1, the environment evolves due to
this interaction to state |t1〉. In a similar way one defines the state |t2〉. According to the ‘trace
of the environment’ picture eiφ e−K = 〈t2|t1〉.



Decoherence of electron beams 3005

One can present the final states of the environment in terms of evolution operators,

|t1〉 = U1|t0〉 U1 = T exp

[
− i

h̄

∫ t1

t0

dt H1(t)

]
(1)

where T means time ordering and H1(t) is the interaction of the electron in beam 1
with the environment. H1(t) is in the interaction representation, i.e. sandwiched with
evolution exponents exp[−iHt/h̄] containing the beam electron Hamiltonian and the
environment Hamiltonian. In a similar way one defines U2 in terms of H2(t) and finds
〈t2|t1〉 = 〈t0|U−1

2 U1|t0〉. For an EM environment, choosing a gauge with zero scalar potential,
we have

H1(t) = −1

c

∫
dr j1(r, t)A(r, t) (2)

where j1 is the electron current density operator for the electron in beam 1 (sandwiched
with the evolution exponents containing the beam electron Hamiltonian) and A is the vector
potential operator (sandwiched with the evolution exponents containing the EM environment
Hamiltonian). H2(t) is defined similarly with the current j2.

In this approach one assumes that at the initial moment t0 the electron source and the
environment are uncorrelated. It is also assumed that the renormalization of the bare electron
parameters due to the interaction with the EM environment [7] does not influence substantially
the dephasing phenomena.

To proceed we assume, following [6], that the current is a classical quantity. When there
is no dissipation in the EM environment, its Hamiltonian is simply the EM field Hamiltonian
and the EM field can be quantized expanding it in normal modes. It is well known that in this
case the commutator [A(r, t), A(r′, t ′)] is an imaginary c-number, and due to the classical
nature of the currents j1 and j2 the commutators of H1(t) and H2(t

′) have the same property.
Because of this property the time ordering affects only the phase of the evolution operators
[9], and one can obtain

U1 = eiφ1V1 V1 = exp

[
− i

h̄

∫ ∞

−∞
dt H1(t)

]
(3)

if H1 is defined to be zero for t < t0 and for t > t1. The phase φ1 contains the commutator
[H1(t),H1(t

′)]. Defining H2(t) in a similar way, we have

U−1
2 U1 = ei(φ1−φ2)V −1

2 V1 = ei(φ1−φ2) eiχ exp

[
− i

h̄

∫ ∞

−∞
dt (H1(t) − H2(t))

]
(4)

where the additional phase χ contains the commutator [H1(t),H2(t
′)]. Averaging this over

|t0〉 we find

〈t2|t1〉 = eiφ e−K = ei(φ1−φ2+χ)

〈
exp

[
i

h̄c

∫ ∞

−∞
dt

∫
dr j12(r, t)A(r, t)

]〉
(5)

where j12(r, t) = j1(r, t) − j2(r, t) and 〈· · ·〉 means average over |t0〉. When the initial state
of the environment is an equilibrium state with temperature T, the average means a thermal
average 〈· · ·〉T .

The second important property of A(r, t) in the case of no dissipation is that it is a
Gaussian operator with respect to thermal averaging 〈· · ·〉T . After expanding A in normal
modes this property follows from the relation [9]

〈exp(α∗a† − αa)〉T = exp
[

1
2 〈(α∗a† − αa)2〉T

] = exp
[−|α|2 (

n + 1
2

)]
(6)
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where a† is the bosonic operator creating a photon in some normal mode, n = 〈a†a〉T is the
occupation number of this mode and α is a complex number. Using the Gaussian properties
of A one can perform the thermal averaging in equation (5) and obtain

K = 1

2(h̄c)2

∫
dt dt ′

∫
dr dr′ jα

12(r, t)j
β

12(r
′, t ′)〈Aα(r, t)Aβ(r′, t ′)〉T (7)

where α, β = x, y, z. If one defines the thermal correlator

Dαβ(r, r′; t − t ′) = 1
2 〈Aα(r, t)Aβ(r′, t ′) + Aβ(r′, t ′)Aα(r, t)〉T (8)

the final result is

K = 1

2(h̄c)2

∫
dt dt ′

∫
dr dr′ jα

12(r, t)j
β

12(r
′, t ′)Dαβ(r, r′; t − t ′). (9)

It was obtained for T = 0 in [6] and for T �= 0 in [7]. We derived it in a different way to
emphasize the two assumptions under which this result is valid (for classical currents), namely:
(i) the commutator of the field operator A(r, t) is an imaginary c-number and (ii) A(r, t) is a
Gaussian quantity with respect to thermal averaging.

When dissipation is present, the EM environment Hamiltonian includes not only the EM
field, but also the electrons in the absorbing bodies and their interaction with the EM field.
If the field operator A is defined as sandwiched by evolution exponents containing the EM
field Hamiltonian only, it has to be considered as a random quantity due to the influence of
the dissipative electron system in the absorbing bodies. These electrons are the thermal bath,
whose temperature defines the temperature of the EM field. Being a random operator, A obeys
the quantum Langevin equation, where the effect of the dissipative electrons is simulated by a
random force. We will show in what follows that the crucial properties of A(r, t) used to derive
equation (9) are valid also for the random vector potential operator, and hence equation (9) is
valid when dissipative bodies are present. Note, that in the case of dissipation normal modes
of the EM field do not exist, the EM field cannot be quantized in the usual way, and this is
why one is forced to use the Langevin equation approach.

3. Quantum Langevin equation for the EM field

A quantum Langevin equation for the coordinate operator q of a particle moving in potential
V (q), derived in [10], can be written in terms of the particle Lagrangian L = mq̇2/2 + V (q)

as
d

dt

∂L

∂q̇(t)
− ∂L

∂q(t)
+

∫ t

−∞
dt ′ γ (t − t ′)q̇(t ′) = F(t). (10)

The kernel γ is responsible for the ‘friction’ produced by the environment, which is a
thermal bath at temperature T, and the operator F(t) is the random force. The statistical
and commutation properties of the random force are defined by the dissipation kernel γ .
Namely, F(t) is a Gaussian stationary random process with 〈F 〉 = 0 and a correlator

1

2
〈F(t)F (t ′) + F(t ′)F (t)〉 = 1

2π

∫ ∞

−∞
dω exp[−iω(t − t ′)]h̄ω coth

h̄ω

2T
Re γ (ω) (11)

while the commutator of the random force is an imaginary c-number,

[F(t), F (t ′)] = 2

π

∫ ∞

−∞
dω exp[−iω(t − t ′)]h̄ω Re γ (ω). (12)

(Note, that this Langevin equation is equivalent to the well-known approaches used by
Feynman and Vernon [11] and Caldeira and Legget [12]).



Decoherence of electron beams 3007

Consider the classical Maxwell equations for the long-wave EM field, rot E = −Ḣ/c and
rot H = Ḋ/c + (4π/c)j, where D is the displacement given by

D(r, t) = E(r, t) +
∫ t

−∞
dt ′ χ(r, t − t ′)E(r, t ′) (13)

and j is the external current density. Note that fields entering the above macroscopic equations
are averaged over a volume �V = (�L)3, where �L is large compared to all relevant
microscopic lengths, but small compared to the wavelength of the EM field. With the gauge
E = −Ȧ/c and H = rot A the first Maxwell equation is satisfied and the second gives an
equation for the vector potential:

1

c2
Ä(t) + rot rot A(t) +

1

c2

∫
dt ′ Ȧ(t ′)χ̇(t − t ′) = 4π

c
j(t). (14)

Starting from the EM field Lagrangian one can prove that this equation can be considered
as the quantum Langevin equation for the random field operator A, if j is the appropriate
random force created by the thermal bath of dissipative electrons. (jα�V/c plays the role
of F and χ̇�V/4πc2 plays the role of γ .) The correlator of this force is known from the
fluctuation–dissipation theorem [13],

1

2
〈jα(r, t)jβ(r′, t ′) + jβ(r′, t ′)jα(r, t)〉 =

∫
dω e−iω(t−t ′)(jα(r)jβ(r′))ω (15)

with

(jα(r)jβ(r′))ω = δαβδ(r − r′)
h̄

8π2
ω2 coth

h̄ω

2T
Im ε(r, ω). (16)

Comparing this correlator with equation (11), we can find from equation (12) the commutator
of the random currents, which turns out to be an imaginary c-number,

[jα(r, t), jβ(r′, t ′)] = δαβδ(r − r′)
h̄

2π2

∫
dω e−iω(t−t ′)ω2 Im ε(r, ω). (17)

(The quantum Langevin equation for the EM field was considered also in [14], but in a form
not suitable for our problem.)

The retarded Green function, corresponding to equation (14), obeys
1

c2
G̈αλ(r, r′; t) + rot rotαβGβλ(r, r′; t) +

1

c2

∫
dt ′ Ġαλ(r, r′; t ′)χ̇(t − t ′)

= −4πδαλδ(r − r′)δ(t) (18)

with the condition G(t) = 0 for t < 0. (The rot operators are defined in terms of the
antisymmetric tensor δασβ as rotαβ = δασβ∇σ and rot rotαβ = ∇α∇β − δαβ∇2.) Using this
Green function one can calculate the random field operator

Aα(r, t) = −1

c

∫
dt ′

∫
dr′ Gαβ(r, r′; t − t ′)jβ(r′, t ′). (19)

Two important consequences follow from this relation. First, as the commutator of the currents
is an imaginary c-number and the G is real, the commutator of the random field operators is
also an imaginary c-number. Second, as the current is a stationary Gaussian process and G
depends on t − t ′, same is the random field operator. Since these two properties of the field
operator were crucial for deriving the dephasing factor as given by equation (9) for the case
of no dissipation, we proved thereby that this result is valid also when dissipation is present.

The last equation allows also the calculation of the correlator and the commutator of the
field operator. The correlator is known [15] to be related to the Green function defined by
equation (18),

Dαβ(r, t; r′, t ′) =
∫

dω e−iω(t−t ′)(Aα(r)Aβ(r′))ω (20)
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with

(Aα(r)Aβ(r′))ω = − h̄

π
coth

h̄ω

2T
ImGαβ(ω; r, r′) (21)

where the Green function in the frequency domain is defined as

Gβλ(r, r′; t) =
∫

dω

2π
e−iωtGβλ(ω; r, r′). (22)

The definition of G(ω) corresponds to that in [16]. The Green function is symmetric,
Gβλ(ω; r, r′) = Gλβ(ω; r′, r), and it follows from the properties of ε(r, ω) that Gβλ(ω; r, r′)∗ =
Gβλ(−ω; r, r′). One can prove the following important integral relation:

ω2

c2

∫
dr0 Im ε(r0, ω)Gλα(ω; r, r0)Gλ′α(ω; r′, r0)

∗ = −4π ImGλλ′(ω; r, r′) (23)

which is an obvious generalization to 3D of the 1D relation given in [14]. (It can be proved
using the following Green theorem:

∫
dr φ rot rotαβψ = ∫

dr rotσαφ rotσβψ .) Using this
integral relation one can obtain equation (21) and also calculate the commutator

[Aα(r)ω, Aβ(r′)ω′] = −δ(ω + ω′)
2h̄

π2
ImGαβ(ω; r, r′). (24)

It is important to note that in deriving equations (21) and (24) with the help of
equation (23) one has to assume that the temperature (entering equation (16)) is constant
over the whole space (where Im ε �= 0). This is correct in thermal equilibrium, when all
absorbing bodies are at the same temperature, and hence equation (21) provides the correlator
for the equilibrium EM field. But it does not provide the correlator for the nonequilibrium
thermal EM radiation, when there is radiation energy exchange between bodies with different
temperatures. This correlator can also be calculated using equation (16), but the integral over
the source point cannot be simplified using equation (23).

4. Dephasing by an infinite thick plate

In what follows we consider a simple geometry when the dephasing body is a half-space z < 0
with ε(r, ω) = ε(ω) and the two beams move in vacuum z > 0 in a plane z = d parallel to
the interface. In this geometry the Green function of the EM field is translational invariant in
the x, y plane and hence can be presented as follows [16]:

Gαβ(ω; r, r′) =
∫

d2k

(2π)2
eik(R−R′)gαβ(ω, k|z, z′) (25)

where R is the component of r in the (x, y) plane and k is a vector in this plane. Because of
the special geometry we are interested in the Green function G for z = z′ = d and α, β = x, y,
and will denote gαβ(ω, k|d, d) ≡ gαβ(ω, k). Using the explicit expressions for gαβ given in
[16], one can write

gαβ(ω, k) = gt (ω, k)

[
kαkβ

k2
− 1

2
δαβ

]
+

1

2
δαβgl(ω, k) (26)

where

gl,t (−ω, k) = gl,t (ω, k)∗ gαβ(ω,−k) = gαβ(ω, k) = gαβ(−ω, k)∗. (27)

The gαβ(ω, k) are related to the correlator of the tangential components of the electric field in
the plane z = d. Using equations (27) one can check from equation (21) that for α, β = x, y

(Eα(R)Eβ(R′))ω =
∫

d2k eik(R−R′)(EαEβ)ωk (28)
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with

(EαEβ)ωk = 2h̄

(2π)3

(ω

c

)2
coth

h̄ω

2T
(−Im gαβ(ω, k)). (29)

The classical current in beam 1 is j1(r, t) = ev1(t)δ(R − R1(t))δ(z − d), where R1(t) is
the trajectory of beam 1 and v1(t) = dR1(t)/dt is the electron velocity in this beam. One can
present

j1(r, t) = eδ(z − d)

∫
d2k

(2π)2

∫
dω e−iωt+ikR(l1)kω (30)

where the radiation amplitude is

(l1)kω =
∫

dt

2π
v1(t) eiωt−ikR1(t). (31)

The relevant frequencies and wave vectors are those of the EM field created by the electron in
beam 1. Similar expressions can be written for beam 2. We now introduce into the dephasing
integral, equation (9), the correlator D expressed in terms of G according to equation (20),
and the Fourier expansions of j1,2 and G according to equations (30) and (25), we find, using
equations (27),

K = e2

2h̄c2

∫ ∞

0

dω

2π
coth

h̄ω

2T

∫
d2k

(2π)2
{−Im gαβ(ω, k)}[(lα)∗kω(lβ)kω + c.c.] (32)

where (l)kω = (l1)kω − (l2)kω. The contribution to this integral comes from frequencies
and wave vectors which are present simultaneously in the fluctuation spectra g(ω, k) and the
radiation spectra (l)kω. Using equation (26) one can rewrite the integral over d2k as follows:

1

2π

∫ ∞

0
dk k{−2 Im gt (ω, k)〈|l̂kω|2〉 − Im[gl(ω, k) − gt (ω, k)]〈|(l)kω|2〉} (33)

where 〈· · ·〉 means angular average and l̂kω = k(l)kω/k.
For slow enough electrons one can use the dipole approximation (DA), when the term

kR1(t) in equation (31) can be neglected. The condition for this is ω � kv, where ω and k are
the typical frequency and wave vector of the EM fluctuations contributing to the integral K,
and v is the characteristic electron velocity. In this approximation (l1)kω ≡ (l1)ω, and e(l1)ω
is the radiating dipole moment. Now (l)kω = (l1)ω − (l2)ω ≡ (l)ω. We substitute (l)ω into
equation (32) and as a result in the DA the dephasing integral is

K = e2

2h̄c2

∫ ∞

0

dω

2π
coth

h̄ω

2T
S(ω)|(l)ω|2 (34)

where

|(l)ω|2 = |(lx)ω|2 + |(ly)ω|2 S(ω) = −Im
∫

d2k

(2π)2
gl(ω, k). (35)

S(ω) is related to the average amplitude of the tangential electric field at the distance d from
the interface. From equation (28) at R′ = R one finds

(
E2

t

)
ω

= (
E2

x + E2
y

)
ω

= h̄

π

(ω

c

)2
coth

h̄ω

2T
S(ω). (36)

It is convenient to represent K = Kp + Ke, where the two terms are the contributions to the
integral in the equation (33) of the domains, respectively, k < ω/c and k > ω/c. In the first
domain the wave vector component perpendicular to the interface kz =

√
(ω/c)2 − k2 is real,

which means that this domain corresponds to waves propagating perpendicular to the interface
(PW), while in the second one kz is imaginary and it corresponds to evanescent waves (EW).
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k

k cω=

nk cω=

( )2k δ ω=

EW

PW

ω4πσ

Figure 1. Borderlines in the (ω, k) plane, see text.

5. Spectral densities g(ω, k)

Using the explicit expressions for gαβ given in [16], one can find (for ω > 0)

gl,t (ω, k) = 2π i

k0
[eipu(ξ)Fl,t (ξ) − Gl,t (ξ)] (37)

where ξ = |k|/k0 with k0 = ω/c, and

Gl,t (ξ) = u ± 1

u
Fl,t (ξ) = ± 1

u

v − u

v + u
− u

v − ε(ω)u

v + ε(ω)u
(38)

with u = [1 − ξ 2]1/2, v = [ε(ω) − ξ 2]1/2, Im u > 0, Im v > 0 and p = 2k0d. The upper sign
corresponds to l and the lower to t.

Consider the spectral densities (−Im gl,t ) in the (ω, k) plane at ω > 0, k > 0 (see figure 1).
One important borderline in this plane is ξ = 1, i.e. k = ω/c, which, as noted above, separates
the propagating waves (PW) domain below it from the evanescent waves (EW) domain above
it. In the PW domain ξ < 1 and

−Im gl,t (ω, k) = 2π

k0
[Gl,t (ξ) − Re Fl,t (ξ) cos pu(ξ)] (39)

while in the EW domain ξ > 1 and

−Im gl,t (ω, k) = −2π

k0
e−p

√
ξ 2−1 Re Fl,t (ξ). (40)

For ε(ω) ≡ 1 one finds u = v and F(ξ) = 0. This corresponds to empty space, in which case
the spectral densities −Im gl,t (ω, k) �= 0 only in the PW domain, where in this case

−Im gl,t (ω, k) = 2π

k0
Gl,t (ξ). (41)

The same result is obviously obtained far from the interface, when d → ∞, since one can
neglect the oscillating or decaying term in equation (37).

The second important borderline is ξ = |ε(ω)|1/2. For a non-dispersive lossless dielectric,
Im ε = 0, ε ≡ n2 > 1, this borderline is simply k = ω/cn, where cn ≡ c/n is the light velocity
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in the dielectric. One easily finds that −Im gl,t (ω, k) = 0 above the second borderline, for
ξ > n. Below it, for 1 < ξ < n, one has

Re Fl,t (ξ) = − 2

ε − 1
(ε − ξ 2)1/2

[
ε(ξ 2 − 1)

(ε + 1)ξ 2 − ε
± 1

]
. (42)

In the generic case of arbitrary complex ε(ω) the spectral densities (−Im gl,t ) are nonzero in
the whole (ω, k) plane.

In what follows we will consider two cases: (i) a highly polarizable lossless dielectric,
Im ε = 0, ε � 1, and (ii) a ‘good’ conductor, Im ε � Re ε � 1. In the last case we write
ε(ω) = ε0 + i(4πσ/ω), where σ is the conductivity, and assume that σ is larger than all relevant
frequencies. Both cases correspond to |ε| � 1 and it is instructive therefore to investigate the
limit |ε| = ∞. In this limit F(ξ) = G(ξ) and the spectral densities −Im gl,t (ω, k) �= 0 only
in the PW domain, where

−Im gl,t (ω, k) = 2π

k0
[1 − cos pu(ξ)]Gl,t (ξ). (43)

One can see that near the interface with an ideal conductor (σ = ∞) or an ideal dielectric
(ε0 = ∞) the tangential electric field fluctuations are suppressed. In the case of a conductor
it is obvious from the boundary condition Et = 0. In the case of a dielectric this boundary
condition is also effective, since Et �= 0 would mean, due to the continuity of Et , infinite
energy density in the dielectric or infinite displacement current.

Now we turn to the spectral density corrections which are due to finite |ε|. To investigate
the role of these corrections we use the following expansions. Well below the second
borderline, i.e. at ξ  |ε|1/2, one has

Fl(ξ) = Gl(ξ) − 4ε−1/2 + O(ε−1) Ft (ξ) = Gt(ξ)[1 − 2ε−1] + O(ε−3/2). (44)

Well above the second borderline, i.e. at ξ � |ε|1/2, one finds

Fl,t (ξ) = i
ε − 1

ε + 1
ξ + i

(
ε − 1

ε + 1

)2 1

2ξ
+ O(ξ−3). (45)

At ξ � |ε|1/2 obviously Fl,t (ξ) � |ε|1/2.
It follows from equation (44) that in the PW domain the finite |ε| corrections are small.

However as we will see later, these corrections are important in the EW domain at small
distances from the interface d. To account for these corrections in a dielectric one can use
the explicit expressions given by equation (42), but for a conductor the situation is more
complicated. For a good conductor it is convenient to use the surface impedance ζ(ω) and the
skin depth δ(ω) defined as follows,

ζ(ω) = (ω/8πσ)1/2 ≈ (2|ε(ω)|)−1/2 δ(ω) = c

(2πσω)1/2
= 2ζ(ω)

c

ω
. (46)

In these terms the second borderline is k = √
2/δ(ω) or ξ = (

√
2ζ(ω))−1. Since ζ(ω)  1

and δ(ω)  k−1
0 when ω  4πσ , this borderline in the EW domain is well above the first

borderline k = ω/c.
In between the borderlines, ω/c  k  δ(ω)−1, one can find using equations (44),

Re Fl(ξ) = −4ζ(ω) Re Ft(ξ) = −4ζ(ω)2ξ. (47)

Above the upper borderline, k � δ(ω)−1, one finds from equation (45), using (ε−1)/(ε+1) =
1 + 4iζ(ω)2, the dominant term to be

Re Fl,t (ξ) = −4ζ(ω)2ξ. (48)
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Now we find from equation (40) the spectral densities for a good conductor in the EW domain.
In between the borderlines

−Im gl(ω, k) = 8π

k0
ζ(ω)e−2kd −Im gt (ω, k) = 8π

k2
0

ζ(ω)2k e−2kd (49)

while above the upper borderline

−Im gl,t (ω, k) = 8π

k2
0

ζ(ω)2k e−2kd −Im gαβ(ω, k) = 8π

k2
0

ζ(ω)2k e−2kd kαkβ

k2
. (50)

In the EW domain the fluctuations are small, because of the small surface impedance, and are
strongly suppressed at k � d−1, since random fields created by fluctuations of the random
currents with wavelength shorter than d are averaged at the distance d.

6. Spectral density S(ω)

The spectral density, which enters in the DA, can be split into contributions of the PW and
EW domains, S(ω) = Sp(ω) + Se(ω), with

Sp(ω) = −1

2
k0 Re

∫ 1

0
dξ ξ

[
eip

√
1−ξ 2

Fl(ξ) − Gl(ξ)
]

Se(ω) = −1

2
k0

∫ ∞

1
dξ ξ e−p

√
ξ 2−1 Re Fl(ξ).

(51)

To avoid misunderstanding we note that the spectral density due to a half-space z < 0 with
ε(ω) calculated in [17] is not for the equilibrium EM field, but is for the radiation into a zero
temperature half-space z > 0.

In the limit |ε| = ∞ only PW contribute and one finds easily the spectral density

S(ω) = Sp(ω) = ω

c

[
2

3
− cos p

p2
− sin p

p

(
1 − 1

p2

)]
. (52)

At large distances from the interface, d � k−1
0 , one has S(ω) = (2/3)k0, which corresponds

to EM field fluctuations in empty space. (The factor 2/3 appears because only two tangential
components of the electric field are relevant.) At small distances, d  k−1

0 , the fluctuations
are suppressed, S(ω) ∼ d2. For an ideal conductor or ideal dielectric the contribution to S(ω)

comes from ξ � 1 (i.e. k � ω/c) independent of the value of the parameter p = 2k0d.
Now we turn to the finite |ε| corrections. One can see from equation (44) that the

corrections to Sp(ω) are small, and one can use for Sp(ω) the result given by equation (52).
But this is not the case for Se(ω) when d is small and the decay of the exponent in this integral
is slow. For a dielectric, Se(ω) can be calculated using equation (42) and when ε = n2 � 1
the result is

d  λn : Se(ω) = 2

3
k0n d � λn : Se(ω) = 1

2k0n

1

d2
(53)

where λn = cn/ω = (k0n)−1 is the wavelength in the dielectric. The first of equations (53)
means simply that the fluctuations of Et at d  λn in the vacuum are the same as in the
dielectric, which is consistent with the continuity of Et at the interface. Equations (53) clearly
demonstrate the importance of finite |ε| corrections at small distances. Comparing Se(ω) for
d � λn with Sp(ω) from equation (52), one can see that the ideal dielectric approach, when
S(ω) is dominated by PW, is valid only at d � λn−1/4 = λnn

3/4, while at smaller distances
S(ω) is dominated by EW. According to the ideal dielectric approximation, equation (52),
near the interface the fluctuations are suppressed compared to free space, while from the first
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of equations (53) it follows that they are enhanced compared to free space by a factor n. The
contribution to the integral Se(ω) comes from k � λ−1

n , when d  λn, and from k � d−1

when d � λn. When Se(ω) dominates, both cases correspond to large imaginary kz. In
other words, the fluctuations contributing to Se(ω), are due to near fields localized close to the
interface.

The situation in a conductor is different, since from equation (48) one can see that the
integral Se(ω) diverges at d = 0. The near-field fluctuations in the case of a conductor are

d  δ(ω) : Se(ω) = ζ(ω)2

2k2
0d

3
= δ(ω)2

8d3
d � δ(ω) : Se(ω) = ζ(ω)

2k0d2
= δ(ω)

4d2
. (54)

The near-field/far-field crossover point is d× � (c/ω)ζ(ω)1/4 and for all d the relevant
k � d−1. When d  δ(ω) the relevant k are above the borderline k = √

2/δ(ω) and the first
of equations (54) is obtained using equation (50), while when d � δ(ω) the relevant k are
below this borderline and the second of equations (54) is obtained using equation (49).

Comparing Se(ω) for a dielectric and a conductor one can see that they are similar not
very close to the interface, if one replaces n−1 by ζ(ω) and λn by δ(ω). The behaviour very
close to the interface is different, since for a dielectric Se(ω) is finite, while for a conductor
it diverges. (This singularity is cut off if one takes into account the spatial dispersion of the
conductor ε [17].)

7. Dephasing by near fields

To simplify the picture of dephasing we assume that the electrons smoothly accelerate and
decelerate. In other words, we assume that the electron motion has only one characteristic time
scale τ , which is the time of flight from the emitter to the detector, and only one length scale L,
which is the trajectory length. The characteristic electron velocity is defined as v = L/τ . We
also assume, following the experimental situation, that the beams are close, i.e. the distance
between them a is small compared to L. The frequencies of the EM waves emitted by the
electrons are of the order of ω = τ−1 and wavelengths are of the order of λ = cτ . In this
model the angle averages entering the integrals in equations (33) and (34) can be presented as
follows:

〈|l̂kω|2〉 = θL2�1(z, y) 〈|(l)kω|2〉 = θL2�2(z, y) |(l)ω|2 = θL2�2(z, 0) (55)

where z = ωτ/2, y = kL, and the small factor θ = (a/L)2 appears because the beams are
close and the effective current j12 is smaller than the beam currents j1 and j2. The functions
� decay fast enough at ω � τ−1 and k � L−1, restricting the integration in the (ω, k) plane
in equation (32) within the rectangle � ≡ [0 < ω � τ−1, 0 < k � L−1], shown in figure 2 by
dashed lines.

The frequency integral in equation (34) contains three characteristic frequencies, namely,
T/h̄ (the frequency of the EM field thermal fluctuations), τ−1 (the frequency radiated by the
electron) and c/d (the frequency which enters the spectral densities g). Assuming v/c = 0.1
and L = 10 cm, we have τ = 3 × 10−9 s. The electro-optical system, which creates, guides
and detects the beams, is at room temperature, and this is the temperature of the EM field
surrounding the beams. At room temperature h̄/T = 2.5 × 10−14 s and obviously always
T/h̄ � τ−1. Hence one can replace in the integral equation (32) coth(h̄ω/2T ) by its classical
high temperature approximation.

From the spectral densities calculated in sections 5 and 6 it follows that when |ε| � 1
the contribution Kp of the PW can be calculated as for an ideal conductor or dielectric. To
calculate this contribution one can employ the DA, equation (34), because when |ε| = ∞ the
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Figure 2. Integration domains in the (ω, k) plane, see text.

density S(ω) comes from k � ω/c, and for non-relativistic electrons the condition for the DA
to be valid, namely kv  ω, is satisfied.

First we calculate the dephasing near an ideal conductor or ideal dielectric, given by Kp,
equation (34). Substituting there |(l)ω|2 from equation (55) we obtain

d � λ : Kp = K0 = bp1αθ

(
L

c

)2
T/h̄

τ

d  λ : Kp = bp2K0
d2

λ2
.

(56)

Here K0 is the dephasing in free space, α = e2/h̄c is the fine structure constant and the
numerical factors b � 1 are given in terms of integrals

bp1 = 2J0

3π
bp2 = 16J2

5J0
Jk =

∫ ∞

0
dz zk�2(z, 0). (57)

The second of equations (56) demonstrates that near an ideal conductor and dielectric the
dephasing is suppressed. For the parameters used one obtains, neglecting numerical factors,
K0 � 10θ . This means that for well-separated beams (θ � 1) at room temperature the
dephasing due to thermal fluctuations can be significant. In the existing experiments, however,
the beams are very close, a = 100 µm, and the dephasing is negligible, K0 � 10−5.

Now we turn to the EW contribution Ke, which is responsible for the enhancement of the
dephasing near the interface. As one can see from figure 2, this contribution is large for small
electron velocities v, when the overlap of the rectangle � with the EW domain is maximal.
Motivated by this we consider first the simpler case of dielectric for v  cn = c/n. Since
for a dielectric the spectral densities −Im gl,t (ω, k) vanish above the borderline k = ω/cn,
the integration domain overlaps only with the ‘bottom’ of the rectangle �, where k is small,
meaning that one can employ the DA. Being interested in an almost ideal dielectric (n � 1),
we substitute the spectral density from equations (53) into equation (34) and find the dephasing
due to near fields to be

d  λn : Ke = 1
2K0n

d � λn : Ke = beK0
λ2

nd2
be = 3J−2

8J0

(58)
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where λn ≡ cτ/n. Comparing the second of equations (58) with equation (56) one finds
the far-field–near-field crossover for dephasing to be d× � λn−1/4, obviously the same as
for S(ω). In contrast to the predictions of the ideal dielectric approximation (n = ∞) the
dephasing of beams moving near the interface is not suppressed compared to empty space,
but enhanced by a large factor n/2. Since for most dielectrics n does not exceed 10, the
condition v  c/n is not very severe for non-relativistic electrons, but on the other hand, the
enhancement of the dephasing near the interface is not very strong.

The situation is much more complicated for conductors, since the spectral densities
−Im gl,t (ω, k) do not vanish above the upper borderline k = √

2/δ(ω) and the integration
domain overlaps with the whole rectangle �. The parameter which plays the role of 1/n

in the case of a conductor is ζ = (8πστ)−1/2, i.e. the surface impedance calculated for
the characteristic frequency τ−1. Copper at room temperature has σ = 5 × 1017 s−1 =
6 × 105 (� cm)−1, so for a good conductor this impedance can be as small as 10−5, and hence
the restriction v  ζc can be very severe. As a result one has to consider velocities larger
than ζc, when the DA might be invalid. Consequently the calculations are very involved, so
we first present the results, discuss them and sketch the calculations in the appendix. In what
follows we present the results for κ ≡ K/K0 and the crossover distance d× from near-field
to far-field dephasing. The results are given in terms of the trajectory length L, the radiated
wavelength λ = cτ , the surface impedance ζ and the skin depth δ = 2λζ . All numerical
factors of order 1 are omitted.

Three velocity intervals are relevant, namely,

A : v/c  ζ B : ζ  v/c  ζ
1/4

C : ζ
1/4  v/c. (59)

The crossover distances from near-field to far-field dephasing in these intervals are as follows:

A + B : d× = ζ
1/4

λ C : d× = ζ
1/2

(λ2/L). (60)

The far-field dephasing, at d � d×, in all velocity intervals is given by equation (56). The
near-field dephasing, at d  d×, is different in different velocity intervals.
In interval A

d  L : κ = δ
2
λ/L3 L  d  δ : κ = δ

2
λ/d3 δ  d  d× : κ = δλ/d2. (61)

In interval B:

d  L : κ = δλ/L2 L  d  d× : κ = δλ/d2. (62)

In interval C:

d  d× : κ = δλ/L2. (63)

As one can see from the above results, in the velocity interval A + B the crossover d× is
the same as for S(ω) and L  d×  λ. In this velocity interval K depends on d in a

non-monotonic way, reaching a minimum at d×, where κ � ζ
1/2

. In the velocity interval C
one finds δ  d×  L and approaching the interface K decays monotonically until d � d×,
where it saturates at κ � ζ (v/c)−2. For all velocities K is finite at d = 0, since at very small
d the DA is invalid, and the singularity d−3 in S(ω) is cut off by the ineffectiveness of wave
vectors k � L−1.

As was already mentioned, the dephasing K0 in empty space is very weak, and this is why
the possible enhancement of K near the interface is of special interest. Looking for the ratio
η ≡ K(d = 0)/K0 one can see from the above results that the dephasing near the interface
is enhanced compared to that in empty space only for small enough electron velocities, when

v/c  ζ
1/2

, i.e. in the interval A and in the smaller velocity part of interval B. Since in the
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experiment the fixed parameter is not τ , but L, and hence ζ depends on v, it is more convenient
to use a different parameter, namely γ = c/8πσL. In terms of this parameter the velocity
interval A is v/c  γ and the dephasing enhancement in this interval is η = γ (v/c)−2. The
smaller velocity part of interval B is γ  v/c  γ 1/3 and here η = γ 1/2(v/c)−3/2. (Note
also, that the necessary condition ζ  1 reduces to γ (v/c)  1 and is always satisfied when
γ  1.) For the parameters used above one finds γ � 10−10 and γ 1/3 � 10−3. It is clear now
that in the case of a good metal the dephasing is enhanced only for relatively slow electrons and
is not very high. For example, when v/c = 10−4 one finds η � 10. Much stronger dephasing
can be achieved with a high resistivity semiconductor, for example Si with σ = 1 (� cm)−1,
in which case γ � 10−4 and for v/c = 10−4 one finds η � 104.

8. Dissipation versus dephasing

The coherence of the electrons in the beams can be destroyed only if there are mechanisms
which allow their energy to be dissipated. When there are no absorbing bodies in the EM
environment of the beams, equation (9) describes dephasing related to the dissipation of
electron energy by radiation of EM waves ‘to infinity’. In fact it means that the energy is
dissipated in very far bodies, not included in the consideration explicitly. Equation (9) is
formally valid also when the beams are within a lossless cavity, if the small absorption in the
walls is still large enough to prevent EM field buildup in the cavity.

If electrons in the two beams move along close trajectories and with similar velocities,
j12 = j1 − j2 is small and the dephasing is weak. When the distance between the trajectories
is small compared to the correlation length of the EM field in the direction perpendicular
to the beams, the random electric fields in adjacent points of the two trajectories fluctuate
synchronously, and as a result electrons in both beams change their phases also synchronously,
which means that the beams remain mutually coherent. It does not mean, however, that the
energy losses in the beams, defined by the currents j1 and j2 separately, are small. There is one
additional very important difference between dephasing and dissipation. Using the relation
〈D(α)†a†aD(α)〉T = n + |α|2, where D(α) = exp[αa† − α∗a], one can prove that the energy
radiated by a classical current into a thermal EM field is

W = 1

2h̄c2

∫
dt dt ′

∫
dr dr′ jα(r, t)jβ(r′, t ′)i

∂

∂t
[Aα(r, t), Aβ(r′, t ′)]. (64)

Hence, in strong contrast to dephasing, the energy losses of the beam electrons do not depend
on the environment temperature.
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Appendix

In what follows we sketch the calculations of the results presented in equations (60)–(63).
There are two contributions to Ke, namely K ′′

e , coming from above the borderline k =√
2/δ(ω), and K ′

e, coming from between the borderlines k = ω/c and k = √
2/δ(ω).
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These two contributions can be estimated using −Im gl,t (ω, k) from equations (50) and (49),
respectively. One can also see from figure 2 that when d � L the cut off factor e−2kd in
−Im gl,t (ω, k) selects from the rectangle � only its ‘bottom’ and hence the DA is valid.

In the velocity interval A the length hierarchy is L  δ  λ. When d  δ the main
contribution is K ′′

e , where gl = gt , and the second term in equation (33) vanishes. As a result

Ke = K ′′
e = 3

J0
K0

δ
2
λ

L3

∫ ∞

0

dz

z2

∫ ∞

0
dy y2 e−(2d/L)y�1(z, y). (65)

If d � L one can put z = 0, which corresponds to the DA, in agreement with what was stated
above, and obtain

Ke = 3J−2

4J0
K0

δ
2
λ

d3
. (66)

If d  L one can put d = 0 and the integral is a numerical factor of order 1. When d � δ the
main contribution is K ′

e with gl dominating, and in addition the DA is valid. Substituting the
second of equations (54) into equation (34) one finds

Ke = K ′
e = 3J−3/2

27/2J0
K0

δλ

d2
. (67)

In the velocity interval B + C the length hierarchy is δ  L  λ. Here the main
contribution is always K ′

e and one can check that gt can be neglected compared to gl . As a
result

Ke = K ′
e = 3

21/2J0
K0

δλ

L2

∫ ∞

0

dz

z3/2

∫ ∞

0
dy y e−(2d/L)y�2(z, y). (68)

If d � L one can put y = 0 and obtain

Ke = 3J−3/2

25/2J0
K0

δλ

d2
. (69)

When d  L one can put d = 0 and the integral is a numerical factor. These results are
valid in the whole velocity interval B + C. The separation appears when one compares the
near-field and far-field contributions and finds that d× � L in B, while d×  L in C.
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